Table of Contents
AMPAC has a very powerful and robust configuration interaction (CI) engine, so it is worthwhile to present a simple example of its use. (A complete description of CI theory and keywords can be found in Chapter 11, Configuration Interaction.) In this example, ethylene is being optimized with a very limited CI. Many more CI examples can be found in the AMPAC test stuite.
am1 c.i.=2 cistate=3 cimax=100 singlet t=auto truste lforce bonds D2h Ethylene, AM1/CI, HOMO LUMO Active, S0 (Singlet Ground State) Opt+LowFreq, Active MOs and Bonds, Calc 3 Lowest States C 0.000000 0 0.000000 0 0.000000 0 0 0 0 C 1.325916 1 0.000000 0 0.000000 0 1 0 0 H 1.098266 1 122.715971 1 0.000000 0 1 2 0 H 1.098266 1 122.715971 1 -180.000000 1 1 2 3 H 1.098266 1 122.715971 1 0.000000 1 2 1 4 H 1.098266 1 122.715971 1 180.000000 1 2 1 4 0 0.000000 0 0.000000 0 0.000000 0 0 0 0
Timestamp: 2011-08-31-12-35-20-0000001734-win64 User Info: John Millam, Nahum, ******************************************************************************* AM1 CALCULATION RESULTS ******************************************************************************* * AMPAC Version 10.0.1 * Presented by: * * Semichem, Inc. * www.semichem.com * * AM1 - THE AM1 HAMILTONIAN TO BE USED * RHF - RESTRICTED HARTREE-FOCK CALCULATION * TRUSTE - MINIMIZE ENERGY USING TRUST REGION METHOD * LFORCE - LOWEST IR FREQUENCIES CALCULATION SPECIFIED * T=AUTO - AUTOMATIC DETERMINATION OF ALLOWED TIME * C.I.=N - 2 M.O.S TO BE USED IN C.I. * CIMAX= 100 - ALLOWED SIZE FOR CI MATRIX * CISTATE= 3 - EIGENSTATES CALCULATED IN CI * BONDS - PRINT NON-ZERO ELEMENTS OF FINAL BOND-ORDER MATRIX * SINGLET - IS THE REQUIRED SPIN MULTIPLICITY ******************************************************************************* AM1 C.I.=2 CISTATE=3 CIMAX=100 SINGLET T=AUTO TRUSTE LFORCE BONDS D2h Ethylene, AM1/CI, HOMO LUMO Active, S0 (Singlet Ground State) Opt+LowFreq, Active MOs and Bonds, Calc 3 Lowest States ATOM CHEMICAL BOND LENGTH BOND ANGLE TWIST ANGLE NUMBER SYMBOL (ANGSTROMS) (DEGREES) (DEGREES) (I) NA:I NB:NA:I NC:NB:NA:I NA NB NC 1 C 2 C 1.32592 * 1 3 H 1.09827 * 122.71597 * 1 2 4 H 1.09827 * 122.71597 * -180.00000 * 1 2 3 5 H 1.09827 * 122.71597 * 0.00000 * 2 1 4 6 H 1.09827 * 122.71597 * 180.00000 * 2 1 4 MOLECULAR POINT GROUP SYMMETRY CRITERIA D2h 0.10000000 SINGLET STATE CALCULATION RHF CALCULATION, NO. OF DOUBLY OCCUPIED LEVELS = 6 ** REFERENCES TO PARAMETERS ** H (AM1): M.J.S. DEWAR ET AL, J. AM. CHEM. SOC. 107 3902-3909 (1985). C (AM1): M.J.S. DEWAR ET AL, J. AM. CHEM. SOC. 107 3902-3909 (1985). CARTESIAN COORDINATES ATOM X Y Z 1 C 0.00000000 0.00000000 0.00000000 2 C 1.32591600 0.00000000 0.00000000 3 H -0.59358517 0.92403726 0.00000000 4 H -0.59358517 -0.92403726 0.00000000 5 H 1.91950117 -0.92403726 0.00000000 6 H 1.91950117 0.92403726 0.00000000 STANDARD DEVIATION ON ENERGY (KCAL) 0.00000055519 STANDARD DEVIATION ON GRADIENT (KCAL/A,RD,RD) 0.00008233 0.00007642 0.00008301 LOWEST IR FREQUENCIES CALCULATION (MARCH 1999) HEAT OF FORMATION= 8.261408 kcal/mole RMS GRADIENT NORM= 0.020640 kcal/mole/A HESSIAN SPANNED BY 12 INTERNAL COORDINATES. 1 LOWEST EIGENVALUES OF THE HESSIAN HAVE BEEN ACCURATELY CALCULATED. NON ZERO EIGENVALUES, (STD DEV) AND ASSOCIATED EIGENVECTORS: (Angstroms or radians) 1.51D+01 0.000 0.000 0.000 0.000 0.000 -0.703 0.000 0.000 -0.599 0.000 (1.61D-03) 0.000 -0.384 NOTE: WAVE NUMBERS ARE BIASED WITH RESPECT TO EXACT VALUES, BUT SIGNS ARE ASCERTAINED (UNLESS A ERROR BAR TOO LARGE). VIBRATIONAL FREQUENCIES AND ERRORS (CM-1), REDUCED FORCE CONSTANTS (MILLIDYNES/ANGSTROMS), DIPOLE DERIVATIVES (DEBYE/ANGSTROMS), IR INTENSITIES (DEBYE**2/ANGSTROMS**2), AND NORMAL MODES (CARTESIAN COORDINATES): FREQ : 0.000 0.000 0.000 0.000 0.000 0.000 965.219 ERROR : 0.000 0.000 0.000 0.000 0.000 0.000 0.155 F-CST : 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.27443 DIP(X): 0.000 0.000 0.000 0.000 0.000 0.000 0.000 DIP(Y): 0.000 0.000 0.000 0.000 0.000 0.000 0.000 DIP(Z): 0.000 0.000 0.000 0.000 0.000 0.000 0.000 DIP TOT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 IR ITEN 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1C (x) -0.0043 0.0000 0.0000 0.0000 0.1888 0.0000 0.0000 1C (y) -0.1256 -0.0465 -0.1542 -0.0091 -0.0029 -0.1249 0.0000 1C (z) 0.0442 0.0642 -0.1598 -0.1073 0.0010 0.1367 0.1244 2C (x) -0.0043 0.0000 0.0000 0.0000 0.1888 0.0000 0.0000 2C (y) 0.1630 -0.0474 -0.1029 0.0239 0.0037 -0.1321 0.0000 2C (z) 0.0126 0.1237 0.0401 -0.1893 0.0003 -0.0944 -0.1244 3H (x) -0.2036 0.0006 -0.0354 -0.0228 0.1842 0.0049 0.0000 3H (y) -0.2523 -0.0460 -0.1768 -0.0236 -0.0057 -0.1217 0.0000 3H (z) 0.0402 0.4418 -0.3240 0.2038 0.0009 0.1806 -0.3947 4H (x) 0.1950 -0.0006 0.0354 0.0228 0.1933 -0.0049 0.0000 4H (y) -0.2523 -0.0460 -0.1768 -0.0236 -0.0057 -0.1217 0.0000 4H (z) 0.0761 -0.3655 -0.1709 -0.3463 0.0017 0.2956 -0.3947 5H (x) 0.1950 -0.0006 0.0354 0.0228 0.1933 -0.0049 0.0000 5H (y) 0.2896 -0.0478 -0.0804 0.0384 0.0066 -0.1352 0.0000 5H (z) 0.0166 -0.2538 0.2043 -0.5003 0.0004 -0.1383 0.3948 6H (x) -0.2036 0.0006 -0.0354 -0.0228 0.1842 0.0049 0.0000 6H (y) 0.2896 -0.0478 -0.0804 0.0384 0.0066 -0.1352 0.0000 6H (z) -0.0193 0.5534 0.0512 0.0498 -0.0004 -0.2533 0.3948 AM1 C.I.=2 CISTATE=3 CIMAX=100 SINGLET T=AUTO TRUSTE LFORCE BONDS D2h Ethylene, AM1/CI, HOMO LUMO Active, S0 (Singlet Ground State) Opt+LowFreq, Active MOs and Bonds, Calc 3 Lowest States GEOMETRY OPTIMIZED : ENERGY MINIMIZED SCF FIELD WAS ACHIEVED AM1 CALCULATION VERSION 10.0.1 Aug-31-2011 FINAL HEAT OF FORMATION = 8.261408 kcal (CI SINGLET No 1) = 34.573991 kJ ELECTRONIC ENERGY = -736.450184 eV CORE-CORE REPULSION = 425.733187 eV TOTAL ENERGY = -310.716996 eV GRADIENT NORM = 0.071497 RMS GRADIENT NORM = 0.020639 UNSTABLE MODE(S) = 0 ( ACCURATE ) MOLECULAR WEIGHT = 28.053600 MOLECULAR POINT GROUP = D2h 0.100000 NO. OF FILLED LEVELS = 6 (OCC = 2) TOTAL NUMBER OF ORBITALS = 12 SCF + CI CALCULATIONS = 16 COMPUTATION TIME = 0.23 SECONDS ATOM CHEMICAL BOND LENGTH BOND ANGLE TWIST ANGLE NUMBER SYMBOL (ANGSTROMS) (DEGREES) (DEGREES) (I) NA:I NB:NA:I NC:NB:NA:I NA NB NC 1 C 2 C 1.34092 * 1 3 H 1.09708 * 122.43943 * 1 2 4 H 1.09708 * 122.43943 * -180.00000 * 1 2 3 5 H 1.09708 * 122.43943 * 0.00000 * 2 1 4 6 H 1.09708 * 122.43943 * 180.00000 * 2 1 4 MOLECULAR POINT GROUP SYMMETRY CRITERIA D2h 0.10000000 RHF EIGENVALUES -32.96035 -21.92659 -15.75830 -14.25910 -11.89512 -10.45383 1.37797 4.05778 4.39209 5.06914 5.56126 5.74277 CONFIGURATION INTERACTION CALCULATION 4 MICRO-STATES GENERATED BY CAS-CI VS 44 ROOM AVAILABLE. 4 MICRO-STATES FINALLY KEPT. CI-ACTIVE MOLECULAR ORBITALS: ROOT NO. 6 7 -10.454 1.378 1 C S 0.0000 0.0000 1 C Px 0.0000 0.0000 1 C Py 0.0000 0.0000 1 C Pz 0.7071 -0.7071 2 C S 0.0000 0.0000 2 C Px 0.0000 0.0000 2 C Py 0.0000 0.0000 2 C Pz 0.7071 0.7071 3 H S 0.0000 0.0000 4 H S 0.0000 0.0000 5 H S 0.0000 0.0000 6 H S 0.0000 0.0000 DETAILED COUNT OF THE 4 CALCULATED LOWEST EIGENSTATES: SINGLET TRIPLET CSF 3 1 STATES 3 1 THE EIGENSTATE SELECTED IS No 1 (SINGLET) ROW: MAIN MICRO-STATES OVER THE 4 SELECTED IN C.I. COLUMN: EIGENSTATES FROM 1 TO 3 MO: 00 1:SINGLET 2:TRIPLET 3:SINGLET : 67 eV: 0.0000 2.9456 6.6045 1 20 96% 0% 0% ( 0.9807) ( 0.0000) ( 0.0000) 2 +- 0% 50% 50% ( 0.0000) ( 0.7071) (-0.7071) 3 -+ 0% 50% 50% ( 0.0000) ( 0.7071) ( 0.7071) 4 02 4% 0% 0% (-0.1953) ( 0.0000) ( 0.0000) TRANSITION DIPOLE (A.U.) AND OSC. STRENGTHS FROM STATE 1 (SINGLET) TO OTHERS STATE eV nm X Y Z STRENGTH 2 2.946 420.9 FORBIDDEN TO TRIPLET 3 6.605 187.7 1.4073 0.0000 0.0000 0.3205 SUM OF STRENGTHS: 0.9615 0.0000 0.0000 NET ATOMIC CHARGES AND DIPOLE CONTRIBUTIONS ATOM CHARGE ATOM ELECTRON DENSITY 1 C -0.2193 4.2193 2 C -0.2193 4.2193 3 H 0.1097 0.8903 4 H 0.1097 0.8903 5 H 0.1097 0.8903 6 H 0.1097 0.8903 DIPOLE (DEBYE) X Y Z TOTAL POINT-CHG. 0.000 0.000 0.000 0.000 HYBRID 0.000 0.000 0.000 0.000 SUM 0.000 0.000 0.000 0.000 CARTESIAN COORDINATES ATOM X Y Z 1 C 0.00000000 0.00000000 0.00000000 2 C 1.34092452 0.00000000 0.00000000 3 H -0.58848034 0.92588760 0.00000000 4 H -0.58848034 -0.92588760 0.00000000 5 H 1.92940486 -0.92588760 0.00000000 6 H 1.92940486 0.92588760 0.00000000 ATOMIC ORBITAL ELECTRON POPULATIONS 1.24839 0.95422 1.01669 1.00000 1.24839 0.95422 1.01669 1.00000 0.89035 0.89035 0.89035 0.89035 BOND ORDERS AND VALENCIES | 1 C 1 C | 3.928231 | 1 C 2 C 2 C | 1.852496 3.928231 | 1 C 2 C 3 H 3 H | 0.957752 0.006722 0.987976 | 1 C 2 C 3 H 4 H 4 H | 0.957752 0.006722 0.008643 0.987976 | 1 C 2 C 3 H 4 H 5 H 5 H | 0.006722 0.957752 0.013244 0.001615 0.987976 | 1 C 2 C 3 H 4 H 5 H 6 H 6 H | 0.006722 0.957752 0.001615 0.013244 0.008643 0.987976 ELAPSED WALL CLOCK TIME : 0.24 SECONDS FULL COMPUTATION TIME : 0.23 SECONDS
The primary CI eigenstate is, as requested, the ground state singlet, S0. For reference, the AM1/SCF and experimental heats of formation are 16.5 kcal/mol and 12.5 kcal/mol, respectively. There is a significant decrease in energy in going from AM1/SCF to even this “minimal” AM1/CAS-CI. Since AM1 (and all of the semi-empirical models in AMPAC) was parameterized against experiment at the SCF level, absolute heats of formation at the corresponding CI level are generally too low, especially at higher levels of CI. |
|||||||||||||||||||||||||||||||||
This Z-matrix shows the AM1 optimized geometry of Ethylene in the primary CI eigenstate. All of the results in AMPAC output file, including those for the secondary CI eigenstates, are calculated at this geometry. The transition energies between the primary and secondary CI eigenstates are thus “vertical” transition energies. |
|||||||||||||||||||||||||||||||||
As requested, the number of CI-active MOs was 2, the HOMO and LUMO. There are six possible microstates, given below in terms of the SO occupancies of the HOMO and LUMO, where + means the alpha SO is occupied, - means the beta SO is occupied and 0 means the corresponding SO is unoccupied: Table 21.1. Possible microstates with 2 CI-active MOs
This “minimal” CAS-CI for a singlet state uses the first four 4 microstates, which have Sz = 0. The 5th and 6th microstates, with Sz = 1 and -1, are degenerate with the linear combination of the 3rd and 4th microstates and so are not used, even for the triplet CI eigenstates (they cannot be used for the singlet states, of course). |
|||||||||||||||||||||||||||||||||
The AO coefficients of the two CI-active MOs show that the first (the HOMO) is a π MO while the second (the LUMO) is a corresponding π* MO. |
|||||||||||||||||||||||||||||||||
The 3 lowest secondary CI eigenstates were calculated in addition to the primary one S0. One of the secondary CI eigenstates is a triplet, the others being singlets. The “CSF” row in the table refers to the number of spin-adapted configurations used in the expansion of the CI eigenstates. |
|||||||||||||||||||||||||||||||||
This table gives the contribution - as both a percentage and as a normalized
coefficient - of each microstate to each of the 3 requested CI eigenstates, whose energies
are given (in eV) relative to the primary eigenstate. The SO occupancies of the CI-active
MOs for each microstate are also given. Thus, the first excited state, “
|
|||||||||||||||||||||||||||||||||
This table gives the transition energies, transition wavelengths, transition dipoles and oscillator strengths between the primary CI eigenstate and the two secondary CI eigenstates. Since the primary CI eigenstate is a singlet, the transition dipole and corresponding oscillator strength for the triplet CI eigenstate is identically zero. The first excited singlet state (S1) has a significant transition dipole parallel to the C-C bond and the corresponding oscillator strength of 0.3025 indicates there should be a significant absorption intensity around 187 nm for gas phase ethylene. |
|||||||||||||||||||||||||||||||||
The atomic Mulliken charges and dipole moments given in this section are for the primary CI eigenstate. Values for the secondary eigenstates can be calculated with the AMPAC keyword CIDIP. |
|||||||||||||||||||||||||||||||||
This table gives the atoms’ Cartesian coordinates for the geometry optimized in the primary CI eigenstate. |
|||||||||||||||||||||||||||||||||
These tables of AO electron populations, bond orders and valencies are calculated from the first-order density matrix of the primary CI eigenstate. |
Copyright © 1992-2013 Semichem, Inc. All rights reserved. |